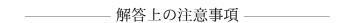
平成30年度入学試験問題(後期日程)

数学

(理工学部)



- 1. 「解答始め」の合図があるまで問題を見てはならない。
- 2. 問題冊子1冊および解答紙4枚がある。解答紙は1枚ずつ切り離して使用すること。
- 3. 問題は $\boxed{1}$ から $\boxed{4}$ まで 4 問ある。各間の解答は所定の解答紙にのみ記入すること。
- 4. 解答紙の裏面を使う場合は、続きの解答を裏面の仕切り線の下に記入すること。
- 5. 解答しない問題がある場合でも、解答紙4枚すべてを提出すること。
- 6. 問題冊子は持ち帰ること。

- 点 (0,a) を中心とする半径 2 の円 C の周上に 3 点 P(s,t), Q(-s,t), R(x,y) をとる。このとき,次の問に答えよ。
 - (1) \overrightarrow{RP} と \overrightarrow{RQ} の内積を a, t, y を用いて表せ。
 - (2) a=0, $s\geq 0$, $t\geq 0$, $x\geq 0$, $y\geq 0$ のとき, (1) の内積の最小値とその ときの s,t,x,y の値を求めよ。
 - (3) y = a のとき,(1) の内積の最大値とそのときの s の値を求めよ。

|2| k は定数とする。関数

$$f(x) = x^3 - 3kx^2 - 2k^2x$$

が $x=\alpha$ で極大値, $x=\beta$ で極小値をとる。ただし, $-1<\alpha<1<\beta$ とする。このとき,次の間に答えよ。

- (1) kのとり得る値の範囲を求めよ。
- (2) $\beta \alpha$ を k を用いて表せ。
- (3) $f(\alpha) f(\beta)$ を k を用いて表せ。

3 a, b, c は定数とし、

$$f(x) = (ax^2 + bx + c)e^{-x}$$

とする。このとき,次の問に答えよ。

- (1) f(x) が相異なる 2 つの極値をもつための条件を求めよ。
- (2) f(x) がただ 1 つの極値として極大値をもつための条件を求めよ。 さら に、f(x) が極大値をとる x の値 x_0 を求めよ。
- (3) (2) の条件が満たされているとき、2 直線 y=0、 $x=x_0$ および曲線 y=f(x) で囲まれる図形の面積 S を求めよ。

- $\boxed{4} \quad 0 \leq x \leq \frac{\pi}{4} \text{ で定義された } 2 \text{ 曲線 } C_1: y = \sin x, \quad C_2: y = \cos x \text{ および}$ $0 \leq x < \frac{\pi}{4} \text{ で定義された曲線 } C_3: y = \tan 2x \text{ について, 次の問に答えよ.}$
 - (1) C_2 と C_3 の交点の x 座標を a とおくとき, $\sin a$ の値を求めよ。
 - (2) $0 < x < \frac{\pi}{4}$ において、不等式 $\sin x < \tan 2x$ が成り立つことを示せ。
 - (3) 3曲線 C_1 , C_2 , C_3 で囲まれた図形の面積Sを求めよ。